689 research outputs found

    El finançament de l'obra de la Seu de Manresa al segle XIV

    Get PDF

    Prat de la Riba i les Bases de Manresa

    Get PDF

    Visualization is crucial for understanding microbial processes in the ocean

    Get PDF
    Recent developments in community and single-cell genomic approaches have provided an unprecedented amount of information on the ecology of microbes in the aquatic environment. However, linkages between each specific microbe\u27s identity and their in situ level of activity (be it growth, division or just metabolic activity) are much more scarce. The ultimate goal of marine microbial ecology is to understand how the environment determines the types of different microbes in nature, their function, morphology and cell-to-cell interactions and to do so we should gather three levels of information, the genomic (including identity), the functional (activity or growth), and the morphological, and for as many individual cells as possible. We present a brief overview of methodologies applied to address single-cell activity in marine prokaryotes, together with a discussion of the difficulties in identifying and categorizing activity and growth. We then provide and discuss some examples showing how visualization has been pivotal for challenging established paradigms and for understanding the role of microbes in the environment, unveiling processes and interactions that otherwise would have been overlooked. We conclude by stating that more effort should be directed towards integrating visualization in future approaches if we want to gain a comprehensive insight into how microbes contribute to the functioning of ecosystems

    Rapte": un tema d'iconografia ignasiana, "El

    Get PDF

    Xarxes invisibles : L'art d'esbrinar quants microorganismes marins hi ha, quins són i què fan

    Get PDF
    7 pages, 5 figures, 1 tableThe greater part of the biomass of living creatures in the ocean is made up of microorganisms. Fundamental to explaining the way those ecosystems work they are responsible for most of the breathing taking place in marine waters and for the heterotrophic use of organic composts. All in all it was not until the end of the 20th century with the development of microscopic instrumentation that their task has been appreciated, putting into doubt the dominant belief that algae are the main generators of primary production (binding carbon). Nowadays, genomics has enabled us to gain insight into the functions of microorganisms that we did not know were present in the plankton.Peer Reviewe

    Seasonal variation of bacterial diversity along the marine particulate matter continuum

    Get PDF
    © Copyright © 2020 Mestre, Höfer, Sala and Gasol. Seasonal dynamics of ocean prokaryotic communities in the free-living fraction have been widely described, but less is known about the seasonality of prokaryotes inhabiting marine particles. We describe the seasonality of bacterial communities in the particulate matter continuum by sampling monthly over two years in a temperate oligotrophic coastal ecosystem and using a serial filtration (including six size-fractions spanning from 0.2 to 200 μm). We observed that bacterial communities in the particulate matter continuum had annual changes following harmonic seasonal oscillations, where alpha, beta, and gamma diversity increased during the warm period and decreased during the cold period. Communities in each size-fraction changed gradually over time, being the communities in larger size-fractions the ones with stronger annual changes. Annual community changes were driven mainly by day length and sea surface temperature, and each size-fraction was additionally affected by other variables (e.g., smaller size-fractions by dissolved PO4 and larger size-fractions by turbidity). While some taxonomic groups mantained their preference for a given size fraction during most of the year, others varied their distribution into different size fractions over time, as e.g., SAR11, which increased its presence in particles during the cold period. Our results indicate that the size-fractionation scheme provides novel seasonal patterns that are not possible to unveil by analyzing only free-living bacteria, and that help to better understand the temporal dynamics of prokaryotes

    Gaudí i la Seu de Manresa

    Get PDF
    corecore